Switchgrass utilization is an emerging market currently in the research and demonstration-project arena. Switchgrass (Panicum virgatum) is a summer perennial grass that is native to North America. It is a natural component of the tall grass prairie that covered most of the Great Plains, as well as the south and eastern United States. It is resistant to many pests and plant diseases, and it is capable of producing high yields with very low applications of fertilizer. This means that the need for agricultural chemicals to grow switchgrass is low to nonexistent; however, fertilization may be necessary to maintain harvestable stands. Switchgrass also is very tolerant of poor soils, flooding and drought.

Switchgrass production can benefit farmers, taxpayers, industrial fiber producers, energy producers and energy consumers. Switchgrass is a valuable soil protection cover crop. It binds loose soils and provides valuable wildlife habitat. Additionally, it has been demonstrated that it could become a valuable fiber source for manufactured composite "wood" products and fiber-plastic composite materials. "Bioenergy" can be produced by co-firing switchgrass with coal to produce electricity in existing power plants, which offers a near-term energy production alternative, as does eventually using switchgrass as a feedstock in bio-reactors that produce bio-based fuels or industrially important chemicals. Pelletized switchgrass has been tested in pellet stoves for general home heating in some rural areas and has been discussed as having great potential as a clean-burning alternative to coal or imported fossil fuels. However, there are lignin and ash issues with some combustion systems.  August 2012 ... Switchgrass


  • Cost of Producing Switchgrass for Biomass in Southern Iowa, Trends in New Crops and New Uses (supported by the U.S. Department of Energy), 2002 - Guide to the different costs associated with producing switchgrass in Iowa.
  • Developing Switchgrass as a Bioenergy Crop, 1999 - Cooperative study to the Auburn site previously listed. This site has very good information on agronomics, bio-fuel conversion and economics, and a bibliography of relevant reports.
  • Economic Analysis of the Conditions for Which Farmers will Supply Biomass Feedstocks for Energy Production, James Larson, Burton English and Lixia Lambert, University of Tennessee, 2007 - This AgMRC-funded study developed a farm-level model to evaluate contract biomass feedstock production, that is, corn stover and switchgrass, for a grain farm. Four potential types of contracts were analyzed; each offered different levels of biomass price, yield and production cost risk sharing between the farm and the processor.
  • From grasses into ethanol - Another piece of the renewable fuel pie?, Bismark Tribune, 2007.
  • Management Guide for the Production of Switchgrass for Biomass Fuel, ISU Extension (supported by the U.S. Department of Energy and State Energy Conservation Program), 2003 - Guide to establishing and maintaining quality stands.
  • Management Guide for the Production of Switchgrass for Biomass Fuel Production in Southern Iowa, Alan Teel, ISU.
  • Manufacturing Fuel Pellets from Biomass, Renewable & Alternative Energy Fact Sheet. Penn State University, 2009.
  • Net energy of cellulosic ethanol from switchgrass; M.R. Schmer, K.P. Vogel, R.B. Mitchell and R.K. Perrin; USDA–Agricultural Research Service and University of Nebraska; 2007.
  • No Market Yet For Switchgrass Biomass, Hay and Forage Grower magazine, 2009 - Article on the University of Kentucky four-year-long switchgrass pilot project designed to help farmers evaluate options for planting, growing, harvesting, transporting and processing the switchgrass. It is funded through a grant to the Kentucky Forage and Grassland Council from the Kentucky Agricultural Development Board. The switchgrass was co-fired with coal for energy production to generate electrical power at a plant in Mayville, Kentucky. For more information, contact Ray Smith at 859-257-3358 or raysmith1@uky.edu.
  • Switchgrass, ISU Extension, 2007 - Discusses the production of switchgrass as a biomass crop for biofuel.
  • Switchgrass: A Living Solar Battery for the Prairies, Ecological Agriculture Projects, McGill University, Canada, 1991 - Very good ethanol production analysis that points out the broad benefits of switchgrass fermentation. As a renewable biomass source of energy, switchgrass has tremendous potential to reduce carbon dioxide emissions relative to other energy sources as well as meet all of Canada's fuel needs through domestic production.
  • Switchgrass as a Bioenergy Crop, ATTRA, NCAT, 2006 - This publication discusses agricultural production aspects of switchgrass. It includes a case study.
  • Switchgrass Production for Biomass, Center for Integrated Agricultural Systems (CIAS), College of Agricultural and Life Sciences, University of Wisconsin, 2001 - One aspect of this study was an economic analysis comparing switchgrass to coal for energy production. The researchers found that on a heating value basis (based on 1997 prices) switchgrass cost about the same as natural gas but 3.7 times as much as coal. The cost of growing and harvesting the switchgrass was overstated in the study because of the small scale and transportation and storage complications. The researchers felt that fertilization or increased production efficiency could close this gap.
  • Switchgrass Research Project Overviews, ARS, USDA - Improved Plants and Production Practices for Grasslands and Biomass Crops in the Mid-Continental Area.

Businesses/Case Studies


Links checked August 2018.